
ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

GRK Biocarbon GRK Infra Oyj

EPD HUB, EPDHUB-0132Publishing date 29 September 2022, last updated date 23 May 2023, valid until 29 March 2024

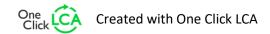
GENERAL INFORMATION

MANUFACTURER

Manufacturer	GRK Infra Oyj
Address	Jaakonkatu 2, 01620 Vantaa
Contact details	maija.hakala@grk.fi
Website	https://www.grk.fi

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022
Sector	Construction product
Category of EPD	Design phase EPD
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Jori Jokela, Macon Oy
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal certification ☑ External verification
EPD verifier	E.A as an authorized verifier acting for EPD Hub


The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	GRK Biocarbon
Place of production	Rantsila, Finland
Period for data	August 2022
Averaging in EPD	No averaging

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO2e)	0.232
GWP-total, A1-A3 (kgCO2e)	-2.58
Secondary material, inputs (%)	0.0098
Secondary material, outputs (%)	0.0
Total energy use, A1-A3 (kWh)	4.71
Total water use, A1-A3 (m3e)	0.0012

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

GRK is a Finnish construction group that operates in Finland, Sweden and Estonia. We employ almost 1000 professionals and our revenue in 2021 was almost EUR 431 million.

Our activities have a long-lasting impact on the surrounding society, as the lifespan of infrastructure can be dozens or even hundreds of years. We are actively developing more resource-efficient solutions and low-carbon materials. Biochar production is one of our future solutions for low carbon construction, by using biochar in surface soil and as C-sink.

Further information about GRK can be found at https://www.grk.fi.

PRODUCT DESCRIPTION

GRK Biocarbon is an urban biochar. Dried wood chips are pyrolyzed in a low oxygenous climate in order to form biochar. Wood which is used and processed in the biochar pyrolysis is recycled material.

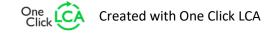
Biochar will be used as soil construction material in an infra construction site. Biochar particle size 0 - 50 mm and envelope density 0,2 - 0,6 g/cm3. EBC Standard is under process.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	-	-
Minerals	-	-
Fossil materials	-	-
Bio-based materials	100	Finland

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate


Biogenic carbon content in product, kg C	0,8
Biogenic carbon content in packaging, kg C	0,003

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg
Mass per declared unit	1 kg

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

	rodu			mbly			L	lse stag	ge			En	d of li	fe stag	ge	s	Beyond the system boundaries				
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4		D				
x	x	x	x	x	MND	MND	MND	MND	MND	MND	MND	MNR	MNR	MNR	x		х				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling			

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The environmental impacts of raw material supply (A1) include emissions generated when raw materials are taken from nature, transported to industrial units for processing (A2) and processed (A3), along with waste handling from the various production processes. All major upstream processes are taken into consideration, including infrastructure. This stage includes all the aforementioned for the raw materials which end up in the final product (product and packaging) as well as the electricity and heat production which are consumed during the manufacturing at the plant.

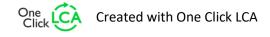
Biochar production process (A3) consists of pyrolysis. Pyrolysis is the heating of an organic material in the absence of oxygen. End product is bio based carbon. Readymade GRK Biocarbon is packed into big bags (flexible intermediate bulk container; FIBC) made by Polypropylene (PP).

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The transportation distance is defined according to standard EN 15804:2019 + A2. Manufacturing plant is taking place in Rantsila region of Finland. The average transportation distance from manufacturing site to construction site is calculated as 330 km and the transportation method is assumed to be lorry. Empty returns are not taken into account as it is assumed that return trip is used by the transportation company to serve the needs of other clients. Transportation does not cause losses.

Lorry crane will be used for unloading. Biocarbon installation (A5) can be then conducted by shovel or a bucket loader. Package materials will be utilized in energy recovery in the end of life.


PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

Biochar is assumed to have negligible effects. It is assumed that 100% of biochar (inert) is left on the ground as carbon storage. So C1, C2 and C3 modules are not relevant. Due to the recycling process plastic packaging material and wooden material (pallets) is converted into energy in the end-of-life (D4, D).

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

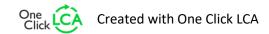
CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	Allocated by mass or volume
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

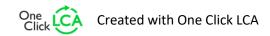

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent and One Click LCA databases were used as sources of environmental data.


ENVIRONMENTAL IMPACT DATA

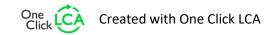
CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP – total	kg CO₂e	-5,31E0	1,69E-2	2,72E0	-2,58E0	3,06E-2	8,8E-1	MND	0E0	0E0	0E0	1,83E0	-4,3E-2						
GWP – fossil	kg CO₂e	1,21E-1	1,69E-2	9,46E-2	2,32E-1	3,09E-2	8,8E-1	MND	0E0	0E0	0E0	1,17E-2	-5,13E-2						
GWP – biogenic	kg CO₂e	-5,43E0	1,23E-5	2,62E0	-2,81E0	2,24E-5	2,4E-4	MND	0E0	0E0	0E0	1,82E0	8,57E-3						
GWP – LULUC	kg CO₂e	1,75E-3	5,1E-6	3,95E-4	2,15E-3	9,3E-6	7,26E-5	MND	0E0	0E0	0E0	6,5E-6	-2,87E-4						
Ozone depletion pot.	kg CFC-11e	2,51E-8	3,98E-9	1,23E-8	4,14E-8	7,26E-9	1,85E-7	MND	0E0	0E0	0E0	3,42E-9	-6,14E-9						
Acidification potential	mol H+e	5,84E-4	7,11E-5	1,26E-3	1,92E-3	1,3E-4	8,97E-3	MND	0E0	0E0	0E0	1,76E-4	-5,11E-4						
EP-freshwater	kg Pe	1,17E-5	1,38E-7	1,87E-5	3,05E-5	2,51E-7	3,47E-6	MND	0E0	0E0	0E0	1E-5	-3,41E-6						
EP-marine	kg Ne	2,06E-4	2,14E-5	3,13E-4	5,41E-4	3,91E-5	3,96E-3	MND	0E0	0E0	0E0	3,18E-5	-6,12E-5						
EP-terrestrial	mol Ne	2,19E-3	2,37E-4	4,73E-3	7,16E-3	4,32E-4	4,34E-2	MND	0E0	0E0	0E0	3,52E-4	-7,34E-4						
POCP ("smog")	kg NMVOCe	8,74E-4	7,61E-5	9,67E-4	1,92E-3	1,39E-4	1,19E-2	MND	0E0	0E0	0E0	1,09E-4	-2E-4						
ADP-minerals & metals	kg Sbe	1,16E-6	2,89E-7	5,66E-6	7,11E-6	5,27E-7	1,31E-6	MND	0E0	0E0	0E0	1,31E-7	-1,21E-7						
ADP-fossil resources	MJ	1,7E0	2,63E-1	1,7E0	3,66E0	4,8E-1	1,18E1	MND	0E0	0E0	0E0	2,65E-1	-1,22E0						
Water use	m³e depr.	1,13E-2	9,8E-4	6,7E-2	7,92E-2	1,79E-3	2,2E-2	MND	0E0	0E0	0E0	1,14E-2	-9,87E-3						

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	4,92E-9	1,53E-9	1,57E-8	2,21E-8	2,79E-9	2,38E-7	MND	0E0	0E0	0E0	1,83E-9	-4,13E-9						
Ionizing radiation	kBq U235e	7,35E-3	1,15E-3	3,75E-3	1,22E-2	2,1E-3	5,06E-2	MND	0E0	0E0	0E0	1,07E-3	-1,96E-2						
Ecotoxicity (freshwater)	CTUe	1,29E0	2,01E-1	1,04E1	1,19E1	3,67E-1	6,93E0	MND	0E0	0E0	0E0	1,77E0	-1,59E0						
Human toxicity, cancer	CTUh	7,39E-11	5,15E-12	1,52E-10	2,31E-10	9,39E-12	2,49E-10	MND	0E0	0E0	0E0	1,71E-11	-2,15E- 11						
Human tox. non- cancer	CTUh	1,67E-9	2,39E-10	6,29E-9	8,2E-9	4,35E-10	6,17E-9	MND	0E0	0E0	0E0	3,94E-10	-6,05E- 10						
SQP	-	3,07E-1	3,98E-1	2,89E-1	9,94E-1	7,25E-1	3,05E-1	MND	0E0	0E0	0E0	8,88E-1	-6,37E-2						

USE OF NATURAL RESOURCES

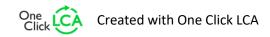

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy	MJ	4,84E0	3,32E-3	8,45E0	1,33E1	6,05E-3	6,4E-2	MND	0E0	0E0	0E0	6,73E-3	-3,82E-1						
Renew. PER as material	MJ	5,64E1	0E0	9,4E-2	5,65E1	0E0	-2,8E0	MND	0E0	0E0	0E0	0E0	0E0						
Total use of renew. PER	MJ	6,12E1	3,32E-3	8,54E0	6,98E1	6,05E-3	-2,74E0	MND	0E0	0E0	0E0	6,73E-3	-3,82E-1						
Non-re. PER as energy	MJ	1,7E0	2,63E-1	1,7E0	3,66E0	4,8E-1	1,18E1	MND	0E0	0E0	0E0	2,65E-1	-1,22E0						
Non-re. PER as material	MJ	0E0	0E0	0E0	0E0	0E0	-5,2E-1	MND	0E0	0E0	0E0	0E0	0E0						
Total use of non-re. PER	MJ	1,7E0	2,63E-1	1,7E0	3,66E0	4,8E-1	1,13E1	MND	0E0	0E0	0E0	2,65E-1	-1,22E0						
Secondary materials	kg	0E0	0E0	9,76E-5	9,76E-5	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Renew. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Non-ren. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Use of net fresh water	m³	5,89E-4	5,48E-5	5,35E-4	1,18E-3	1E-4	1,05E-3	MND	0E0	0E0	0E0	2,9E-4	-2,72E-4						

END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	3,22E-3	2,56E-4	6,55E-3	1E-2	4,67E-4	1,28E-2	MND	0E0	0E0	0E0	9,6E-4	-5,44E-3						
Non-hazardous waste	kg	5,85E-2	2,83E-2	2,08E-1	2,95E-1	5,17E-2	1,47E-1	MND	0E0	0E0	0E0	9,99E-1	-1,04E-1						
Radioactive waste	kg	1,14E-5	1,81E-6	3,89E-6	1,71E-5	3,3E-6	8,26E-5	MND	0E0	0E0	0E0	1,57E-6	-9,23E-6						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Materials for recycling	kg	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Materials for energy rec	kg	0E0	0E0	0E0	0E0	0E0	1,53E-2	MND	0E0	0E0	0E0	0E0	0E0						
Exported energy	MJ	0E0	0E0	0E0	0E0	0E0	5,1E-1	MND	0E0	0E0	0E0	0E0	0E0						



ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	1,21E-1	1,68E-2	9,13E-2	2,29E-1	3,06E-2	8,74E-1	MND	0E0	0E0	0E0	1,61E-2	-4,96E-2						
Ozone depletion Pot.	kg CFC-11e	2,01E-8	3,16E-9	1,24E-8	3,57E-8	5,77E-9	1,47E-7	MND	0E0	0E0	0E0	2,79E-9	-6,84E-9						
Acidification	kg SO₂e	3,78E-4	3,45E-5	8,75E-4	1,29E-3	6,29E-5	1,27E-3	MND	0E0	0E0	0E0	1,35E-3	-4,45E-4						
Eutrophication	kg PO ₄ ³e	1,37E-4	6,96E-6	3,18E-4	4,62E-4	1,27E-5	2,25E-4	MND	0E0	0E0	0E0	3,18E-4	-1E-4						
POCP ("smog")	kg C₂H₄e	6,44E-5	2,18E-6	3,78E-5	1,04E-4	3,98E-6	1,3E-4	MND	0E0	0E0	0E0	7,44E-6	-1,84E-5						
ADP-elements	kg Sbe	1,16E-6	2,89E-7	5,66E-6	7,11E-6	5,27E-7	1,31E-6	MND	0E0	0E0	0E0	1,31E-7	-1,21E-7						
ADP-fossil	MJ	1,7E0	2,63E-1	1,7E0	3,66E0	4,8E-1	1,18E1	MND	0E0	0E0	0E0	2,65E-1	-1,22E0						

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

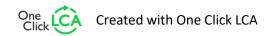
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.


I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Elma Avdyli as an authorized verifier acting for EPD Hub Limited 29.09.2022

